
 1

ASLtbx Manual

(May 28 2011)

http://cfn.upenn.edu/~zewang

Ze Wang
Dept. of Psychiatry, School of Medicine,

Department of Bioengineering

School of Engineering and Applied Science

University of Pennsylvania

zewang@mail.med.upenn.edu

redhatw@gmail.com

 2

CONTENT

1. INTRODUCTION .. 3

1.1 THEORY AND BACKGROUND ... 3

1.2 REQUIREMENT .. 4

1.3 IMAGE FORMAT ... 4

2. INSTALLING ASLTBX ... 4

2.1 DOWNLOAD ASLTBX .. 4

2.2 UNZIP AND INSTALL ASLTBX .. 5

2.3 ADD ASLTBX PATH TO MATLAB SEARCH PATH .. 6

2.4 SAMPLE DATA ... 6

2.4.1 Data structure and parameters ... 6

2.4.2 Functional Stimuli .. 6

3 ASL DATA PREPROCESSING USING SPM GUI ... 7

3.1 REORIENT THE IMAGES ... 7

3.1.1 Set or find the origin in SPM GUI mode .. 7

3.1.1.1 Reset the orientations .. 9

3.1.1.2 Find the Anterior Commissure .. 9

3.1.1.3 Reorient images .. 9

3.2 MOTION CORRECTION (NEW) .. 9

3.3 COREGISTRATION BETWEEN ASL IMAGES AND THE STRUCTURE IMAGES. ... 9

3.4 SMOOTHING .. 10

4 PROCESSING ASL DATA IN BATCH MODE .. 10

4.1 THE PIPELINE FILE AND DATA SETTING FILE ... 10

4.2 RESETTING AND SETTING ORIGINS .. 10

4.3 MOTION CORRECTION ... 11

4.4 REGISTRATION .. 11

4.5 SMOOTHING .. 11

4.6 GENERATING A BRAIN MASK FOR EXCLUDING OUT-OF-BRAIN VOXELS .. 11

4.7 CBF QUANTIFICATION .. 11

4.8 INDIVIDUAL LEVEL GENERAL LINEAR MODEL ... 12

4.9 GROUP LEVEL ANALYSIS ... 13

5 CBF QUANTIFICATION IN ASLTBX ... 14

5.1 GUI MODE .. 15

5.2 COMMAND LINE .. 16

6 LICENSE ... 19

7 ACKNOWLEDGEMENT ... 19

 3

1. Introduction

This is a brief tutorial to the Arterial Spin Labeled Perfusion MRI data processing toolbox (ASLtbx), a

MATLAB (Mathworks Inc.) and SPM (Wellcome Department, UCL) -based toolkit for processing ASL

data acquired with either the pulsed ASL (PASL) or continuous ASL (CASL) or the pseudo-CASL

technique 1 . The toolbox is free for academic users, and can be obtained from

http://cfn.upenn.edu/~zewang/ under the GPL license. The original GPL license and the file header

should be included in any modified versions. Example datasets for resting ASL and functional ASL with

customized settings are also available through the website. Both the toolbox and the sample data are

not allowed for any commercial use without formal permission from the University of Pennsylvania. We

are not and will not be responsible for any use which is made of this package. By providing exemplar

data, no references or gold standards for the images, blood measures, and any kind of resultant

outcomes are implied. We further disclaim any liability and accuracy of the outcomes arising from using

this package. We are not responsible for any data interpretations. All the code and the data are provided

as they were.

The users are supposed to know the basic idea of fMRI and ASL MRI. They should also know how to

program in Matlab. Please cite the toolbox and the related papers if you are using it or modifying the

code. We are happy to help and happy to collaborate.

For the users who are only interested in cerebral blood flow (CBF) quantification, section 3 and 4 can be

skipped.

1.1 Theory and background

ASLtbx is a collection of processing steps for ASL data. The premier version of the pipeline and the

toolkit were first described in the following paper:

Ze Wang, Geoffrey Aguirre, Hengyi Rao, JiongJiong Wang, Anna R. Childress, John A. Detre, Empirical

ASL data analysis using an ASL data processing toolbox: ASLtbx, Magnetic Resonance Imaging, 2008,

26(2):261-9.

and further enhanced in:

William T. Hu*, Ze Wang*, Virginia M.-Y. Lee, John Q. Trojanowski, John Detre, Murray Grossman,

Distinct Cerebral Perfusion Patterns in FTLD and AD, Neurology, 2010 Sep 7;75(10):881-8. (contributed

equally).

1 All references can be easily found in pubmed and in the code, though a list will be provided in later version.

 4

ASLtbx is implemented in Matlab m-scripts. It is partly based on SPM, a Matlab software package for

brain imaging visualization and analysis that can be freely downloaded from the University College

London (http://www.fil.ion.ucl.ac.uk/spm/). The current version of cerebral blood flow (CBF)

quantification function: asl_perf_subtract uses several input/output functions provided by SPM, though

we are implementing an independent widget in C++.

1.2 Requirement

ASLtbx runs under core MATLAB (The MathWork, Inc., Natick, MA), version 5.3 or higher. Since it needs

a few functions from SPM, SPM (SPM2, SPM5, or SPM8 are preferred, though SPM99 can be still

supported) should be installed and added to MATLAB search path. Please refer to SPM’s website to get

more information. Depending on the dataset size, greater than 256 MB memory might be required.

Otherwise, there are no additional specific hardware requirements for running ASLtbx.

1.3 Image format

Both 3D and 4D NIfTI format and 3D Analyze images are acceptable for current version.

2. Installing ASLtbx

2.1 Download ASLtbx

ASLtbx can be downloaded from

the author’s website

(http://cfn.upenn.edu/~zewang) or

through the website of the Center

for Functional Neuroimaging. It’s

available as a zipped file named

“ASLtbx.zip”. The example

datasets can be downloaded

through the same web site

following the steps illustrated

below.

Figure 2.1. Screen capture showing the link to the download page.

 5

Figure 2.2. Registration page.

Figure 2.3. The real download page.

2.2 Unzip and install ASLtbx

Copy the zip file into a directory, for example, “Z:\ASL\”. Decompress the zip file and move all the .m files

 6

to a directory, for example, “Z:\ASL\ASLtbx ”.

2.3 Add ASLtbx path to Matlab search path

Suppose the toolkit is installed in Z:\ASL\ASLtbx, in Matab command window, type:

addpath Z:\ASL\ASLtbx

to add the ASLtbx path to Matlab search path.

2.4 Sample data

We have now provided 3 datasets: one for fMRI using CASL, another for resting PASL, and the 3d for

resting pCASL. Each dataset has preset scripts showing the acquisition parameters and settings for

processing.

The following instructions are for the ASL fMRI data set, and can be easily adapted to analyze brain

state ASL data such as long video cue condition vs neutral condition. Fewer pre-processing steps are

required for processing resting ASL data. Please check the resting data and the associated scripts for

the details. We will add instructions for processing resting data later.

2.4.1 Data structure and parameters

Go back to the download page to get the example dataset used in this tutorial. Unzip the data into a

new directory (say, “Z:\ASL\ASL_Example_data “) and copy the folders (“batch_scripts” “sub1” “sub2”

“sub3”) into it. The example dataset contains four folders, “batch_scripts” , “sub1” , “sub2” and “sub3” .

The first contains batch scripts customized for processing the example data, the other three folders

contain the three subjects’ example data. Each subject’s folder has a folder named “anat_anlz” holding

the structural image and a folder named “func_anlz” holding the functional images.

The structure image was acquired using a 3D MPRAGE sequence with scan parameters as: FOV=250

mm, TR/TE=1620/3 ms, 192×256 matrix, 160 slices with thickness of 1 mm. Functional images were

acquired using an amplitude modulated continuous ASL (CASL) perfusion imaging sequence optimized

for 3.0 T. Acquisition parameters were: FOV=22 cm, 64×64×12 matrix, Bandwidth=3 kHz/pixel, Flip

angle=90°, TR=3 s, TE=17 ms, Slice thickness=6 mm, Inter-slice space=1.5 mm, Labeling time=1.6 s,

Post label delay time=800 ms. Seventy-two label/control image pairs were acquired for each subject.

2.4.2 Functional Stimuli

During the CASL scan, a block design with two interleaved conditions was used. During the “on”

condition, visual stimuli with an 8-Hz reversing black and white checkerboard were presented

 7

periodically with duration of 72 s. Subjects were also instructed to perform a self-paced, right-hand-only,

finger-tapping task during visual stimuli. The “off” condition consisted only of a blank screen.

The scripts in folder “batch_scripts” are ready to be used for processing the example dataset. See

section 4 for more details.

Note: for your own data, it is better to organize them in a similar way or at least using a consistent

structure when prepare the imaging data. Otherwise, it will be a headache for modifying the scripts.

3 ASL data preprocessing using SPM GUI

ASLtbx can process images that are in the same orientation and have the same voxel size. It is our

recommendation that the raw images should be preprocessed with the following steps before calculating

the quantitative CBF.

3.1 Reorient the images

In SPM, the image origin is set to be the AC-PC line. Though SPM8 might not require this, setting origins

are required in ASL data processing as we noticed remarkable difference when the origins were set to

be the center. The comparisons were made in spm5. Since the same dataset might be processed ten or

more times before publication, it is convenient to put down the coordinators of the AC-PC line in a m-file

so the whole dataset can be re-processed anytime and the same results can be obtained if no changes

made to the pipeline.

3.1.1 Set or find the origin in SPM GUI mode

Click “Display” button and open the structure image or the first image of the functional series.

 8

Figure 3.1. Illustration for how to find and set up image orientation using SPM GUI.

①

②

④

③

⑤

⑥

 9

3.1.1.1 Reset the orientations

Click “Reset..” button （as shown as ① in figure 3.1） and select all the images to be processed

including the structure images and the functional images. This would retain the current voxel sizes and

sets the origins of the images to the center of the volumes and set all the rotations back to zero.

3.1.1.2 Find the Anterior Commissure

Display one of the origin reset images. Click the horizontal bar (② in figure 3.1) to check if the origin,

which is indicated by the crosshair in the three views, is in the center of each view. If not, please do step

3.1.1.1 again.

Click around the three views until the crosshair is at the Anterior Commissure(③ in figure 3.1).

Illustrations for finding the Anterior Commissure can be also got from the following webpage:

http://imaging.mrc-cbu.cam.ac.uk/imaging/FindingCommissures.

The offset between the center of the volume (the current origin after “reset”) and the Anterior

Commissure (the location of the cursor) will show in the box “mm” (④ in figure 3.1).

3.1.1.3 Reorient images

Once you have the offset between the center of the volume and the Anterior Commissure, you can

reorient the images by entering the NEGATIVE of x, y, z coordinates (shown in the “mm” box) to the

boxes named “right” , “forward” , “up” (⑤ in figure 3.1), respectively.

Then click the “Reorient images...” button (⑥ in figure 3.1) and select the images to which the new

origins should be applied to. This will change the affine transformation matrix in the image header in

SPM > 5. The same procedures should be performed for both structural and functional images.

3.2 Motion correction (NEW)

ASL data should be motion corrected for the control and label series separately. But that requires

additional coregistration between these two series. We have adapted the motion correction function

provided in SPM to avoid treating the zig-zagged spin labeling paradigm as additional motions. See

batch_realign.m for the details.

3.3 Coregistration between ASL images and the structure images.

ASL images should be coregistered to anatomical images so they can be later normalized to standard

 10

MNI space for group analysis. The target image and source image should be selected as the T1 image

and the mean ASL raw image, respectively. T2 weight structure images can be used as well.

3.4 Smoothing

The raw ASL images should be smoothed before CBF calculation to prevent noise propagation. A

second smoothing can be applied after CBF calculation and spatial normalization if there are large

inter-brain structure variations noticed after spatial normalization. Users can use SPM GUI to do spatial

smoothing or use the batch_smooth.m script in this package.

4 Processing ASL data in batch mode

It is the author’s flavor to use scripts for processing ASL data though every step can be implemented

using the GUI. Users can try the sample data and the preset scripts to get familiar with the whole

pipeline. For each dataset, users should be able to run through all the steps listed in “batch_run.m”.

4.1 The pipeline file and data setting file

The pipeline file “batch_run.m” shows the sequential ASL data processing flow, including motion

correction, coregistration, smoothing, CBF calculation, normalization, GLM analysis, group analysis, etc.

Different projects (like the resting study) may not need all of the steps. All data parameters, data path,

settings for analysis are saved in a global structure specified in “par.m” (par means parameter).

The setting file can be verified by typing “par” in Matlab console and each filed can be checked by typing

the name accordingly (like typing “PAR.subjects{:}”).

4.2 Resetting and setting origins

Three files are involved here. The file: “batch_reset_orientation” will reset the origin to center of each

volume and set all the rotations back to zero. This will modify the header file of each image directly;

“batch_generateorigintable” is to create an origin table to store the relative coordinators of the AC-PC

line to the center of the volume. After this step, you will need to open the “origintable.m” to fill the

coordinators you find after origin reset (see Fig. 3.1 where you should put down the coordinators 2.5

10.7 -8.7 in the origin table as OPAR.subs(x).t1org = [2.5 10.7 -8.7]). Then “batch_setorigin” will use the

offsets recorded in origintable.m to find the correct origins. It will directly change the header file of each

image.

Do not run “batch_setorigin” more than once unless you have run batch_reset_orientation in advance.

For many users, these 3 steps (reset, generate origin table, and fill in the origin coordinators) are a little

 11

bit confusing. However, you have to do this unless we found easier solution. Please try these 3 steps

with the sample data several times to get an idea.

4.3 Motion correction

Depending on the setting, “batch_realign.m” will realign ASL images to the reference volume. The

reference volume can be set to be the first image or the mean image. Please read the code comments

for how to change the setting. To use the updated motion correction routine, Matlab 7 is required. After

reslicing, new images with “r” in the beginning of the filename and a mean image (starts with “mean”) will

be generated.

4.4 Registration

“batch_coreg.m” coregisters the realigned ASL images to each subject’s structure image. It will apply the

transformation by modifying the header file of each functional image directly.

4.5 Smoothing

“batch_smooth.m” uses the SPM Gaussian smoothing kernel to smooth the realigned and coregistered

functional images to reduce noise. New images with prefix “sr” will be created.

4.6 Generating a brain mask for excluding out-of-brain voxels

“batch_create_mask.m” creates a mask based on the mean of

the functional images which are produced in step 4.5. The mask

image will be called “mask_perf_cbf.img” and will be saved in

each subject’s functional folder. This mask file is used to exclude

the outliers during the ASL perfusion subtraction. If it is not

provided, a default mask will be created in the quantification code.

This brain mask is a rough estimate using a simple intensity

threshold method. Users can use their own created using a

better way.

4.7 CBF quantification

“batch_perf_subtract.m” calls “asl_perf_subtract” to calculate

CBF (see section 5 for more details about the latter function).

Depending the options chosen, CBF image series, delta

 12

perfusion signal image series, mean CBF images (“meanCBF_*.img”) will be generated in each

subject’s directory. Below is a mean CBF image of sub2 in the example dataset.

Figure 4.1 The mean CBF map of sub2.

4.8 Individual level general linear model

This step is to assess the individual level effects, which can be then taken into the group level for a group

level analysis, mimicing the two-stage random effect analysis model designed for BOLD fMRI analysis.

For brain state analysis such as before and after taking medicine/treatment or long duration video

condition vs neutral video condition, users can use this two-stage model as well. Or you can alternatively

take the mean CBF maps into the group level ANOVA model, just like analysis in PET imaging.

Theoretically, these two models are equivalent, but the former one allows the users to assess each

individual’s response with statistical inference, which might be important for future experiment plan. But

the cons are you have to go back to the data in order to extract the CBF difference in the significant

areas.

“batch_model.m” runs the General Linear Model (GLM) on the subtracted images to get the tap-rest

effect in the brain perfusion. Some people may want to use the pure boxcar function as the reference in

GLM. In the toolbox, this can be done by turning on line 73 “SPM.xBF.name='Fourier set' and

commenting out line 74 “SPM.xBF.name='hrf'“.

 “batch_contrasts.m” will produce the contrast maps between the two contrasting conditions.

The result images and SPM.mat will be saved in a directory called “glm_cbf” (specified in par.m) which is

located in each subject’s folder. Below is a snapshot of the GLM analysis results for sub2.

 13

Figure 4.2 GLM analysis results of sub2. Activations in left motor cortex (as shown in the left image) and

visual cortex (as shown in right the image) in response to the visual stimulation and right hand finger

tapping task.

4.9 Group level analysis

Three or 4 steps are involved.

 “batch_2nd_cp_confiles.m” copies each subject’s result map (named as “con*.img”) to a group

directory called “group_anasmallPerf_sinc\tap_rest” under the “ASL_Example_data” directory.

 “batch_usegment_spm5.m” uses SPM’s unified segmentation method to normalize the subjects’ result

maps to standard MNI space for group analysis. The images’ names are prefixed with “w” after

normalization.

 “batch_smooth_wconfiles.m” smoothes the normalized images to reduce the variability induced by

inter-brain structure differences. Images like “swcon*.img” will be generated.

 “batch_2nd_glm.m” does the 2nd level group analysis on the normalized and smoothed images to get

the group effect of the experiment design. Result will be saved in a directory called

“group_anasmallPerf_sinc\tap_rest\RFX” under the “ASL_Example_data” directory. Below is a snapshot

of the group level results for the CASL finger tapping data.

 14

Figure 4.3 Group level results for the CASL fingertapping data.

5 CBF quantification in ASLtbx

CBF quantification in ASLtbx can be

performed either in GUI mode or batch

mode. The quantification model is

described in asl_perf_subtract.m.

Differences might be seen in the

equations as compared to those in the

cited papers due to the different units

used or minor adaptions made. Please

refer the documentation in the code, and

the papers cited in the code. I’m happy

to discuss this in email if users are

interested. But I assume the questioners

 15

read through the equations and the cited papers before raising questions to me. Otherwise, it is just easy

for the questioners but not for me unfortunately since I have all kinds of ASLtbx emails every day.

Before started, make sure SPM and ASLtbx are included into the Matlab searching path, please refer to

section 1.2 and 2.3 for more information about this.

5.1 GUI mode

In Matlab command window, simply type:

asl_perf_subtract

to call function in GUI, which will call a SPM function for selecting the input functional images. The

images should be preprocessed and have the same orientation and voxel size.

Figure 5.1 The first popup window in GUI-based ASL quantification procedure.

Go to one subject’s ASL image folder and select the preprocessed (realigned and smoothed) ASL

images:

Figure 5.2 Step 2: select the preprocessed ASL images.

Press Done and you will get another pop-up window (Fig. 5.3) for inputting parameters or choosing

different options:

 16

Figure 5.3. Input window for defining the image type of the 1st ASL image.

Set the values for other arguments. See section 5.2 for more details for the input arguments.

Figure 5.4. A snapshot of parameter settings for the sample data.

After you input all the required parameters. ASLtbx will start calculating the perfusion difference images

or absolute perfusion images.

5.2 Command line

ASLtoolbox can also be called as a function in Matlab console:

[perfnum] = asl_perf_subtract(Filename, FirstimageType, SubtractionType,...

 SubtractionOrder, Flag, …

 17

 Timeshift, AslType, labeff, MagType, …

 Labeltime, Delaytime, Slicetime, TE, M0img, M0seg, maskimg)

Arguments:

Filename: a list of input image series. Both 3D and 4D NIfTI format and 3D Analyze images are

supported now. This list can be achieved by using SPM’s file selection function. For example,

the following code will get the list of all the .img files names with srfunc_anlz* and pass it to the

variable “Filename”:

Filename=spm_select('ExtFPList','Z:\ASL\ASL_Example_data\sub1\func_anlz', ['^sr'

'func_anlz' '.*\.img$']);

FirstimageType – an integer variable indicates the type of the first image.

 - 0:label; 1:control; for the sequence (PASL and CASL) distributed by the Center for functional

neuroimaging at the University of Pennsylvania, the first image is set to be label.

SubtractionType – an integer indicates which subtraction method will be used

 -0: simple subtraction; 1: surround subtraction; 2: sinc subtractioin.

 For control-label: if the raw images are: (C1, L1, C2, L2, C3...), the simple subtraction are:

(C1-L1, C2-L2...) the surround subtraction is: ((C1+C2)/2-L1, (C2+C3)/2-L2,...), the sinc

subtraction is: (C1.5-L1, C2.5-L2...) if the raw images are: (L1, C1, L2, C2...), the simple

subtraction are: (C1-L1, C2-L2...) the surround subtraction will be: (C1-(L1+L2)/2,

C2-(L2+L3)/2,...), the sinc subtraction will be: (C1-L1.5, C2-L2.5...) and vice versa for using the

label-control subtraction order.

SubtractionOrder – an integer indicates the subtraction orientation: 1: control-label; 0: label-control

 Note: a gold stand to get the correct subtraction order is to check the CBF value in grey matter.

If most grey matter voxels have negative CBF values, you should switch to the opposite

subtraction order. Usually, for CASL, you should choose control-label, and for the FAIR based

PASL data, you should select label – control. When background suppression is applied, the

subtraction order may need to be flipped as well.

Flag - flag vector composed of [MaskFlag, MeanFlag, CBFFlag, BOLDFlag, OutPerfFlag,

OutCBFFlag, QuantFlag]

MaskFlag – an integer variable indicates whether perfusion images will be masked or not. Masking

is recommended to remove the background noise and those non-perfusion regions. - 0: no

mask; 1: mask

MeanFlag – an integer variable indicates whether various mean images will be created - 0: not

save mean image; 1: produce mean image

CBFFlag - 1: will calculate CBF value, 0: no CBF calculation

BOLDFlag – 1 or 0 indicate extracting the pseudo BOLD images or not.

OutPerfFlag – save the perfusion difference images? 1 yes, 0:no.

OutCBFFlag: write CBF signal to disk or not?

QuantFlag: using a unique M0 value for the whole brain? 1:yes, 0:no. To understand this better,

you can read our ISMRM 2011 abstract: Chen et al., Impact of equilibrium magnetization of

blood on ASL quantification, Proc of ISMRM 2011 #300.

 18

Labeff - labeling efficiency, 0.95 for PASL, 0.68 for CASL, 0.85 for pCASL, this can be determined

by simulations or in-vivo measurement.

MagType - indicator for magnet field strength, 1 for 3T, 0 for 1.5T.

Timeshift - a value between 0 and 1 to shift the labeled image forward or backward; only valid for

sinc interpolation.

AslType - 0 means PASL, 1 means CASL or pCASL

Labeltime - time for labeling arterial spins (sec).

Delaytime - delay time for labeled spins to enter the imaging slice, this argument should be set as

the TI2 (the second interval) in QUIPSS.

Slicetime - time for getting one slice, which can calculated through dividing the minimum TR by the

of slices in 2D. The minimum TR can be obtained by blocking out the spin labeling section

and set the post label delay to 0 in the sequence. The slice time contains excitation time

(including the total slice selective gradient time, refocusing gradient time), fat or other

saturation time, slice data acquisition time (#phase encoding lines/bandwidthperpixel, #number

of phase encoding lines usually is the same as the image dimension along y since phase

encoding is generally applied along y direction in 2D imaging. For 64x64 imaging matrix, it is

64.).

M0img - M0 image acquired with short TE and long TR.

M0seg - segmented white matter M0 image needed for automatically calculating the PASL cbf

images.

maskimg - a predefined mask image, for background suppression data, please specify a mask or

change the corresponding threshold in the code.

Outputs:

perfnum: perfusion image number.

Example for using the ASLtoolbox in command line:

For processing the realigned and smoothed sub1’s CASL data in example data set, the following two

lines in MATLAB will select the images and do the CBF quantification:

Filename=spm_select('ExtFPList','Z:\ASL\ASL_Example_data\sub1\func_anlz', ['^sr' 'func_anlz'

'.*\.img$']);

asl_perf_subtract(Filename,0, 0, ...

 1, [1 1 1 0 0 1 0], 0.5, 1, 0.68, 1,...

 1.6, 0.8, 45, 17, [],[],[]);

Output images:

Images written to the disk: Perfusion images, BOLD images, and CBF images (if the flags are turned

on accordingly).

Global perfusion difference signals and CBF values will be saved to a txt file.

All the output files will be saved in the same directory as the input files.

 19

6 License

ASLtbx is free. You can redistribute it and/or modify it under the terms of the GNU General Public

License as published by the Free Software Foundation, either version 3 of the License, or (at your option)

any later version.

ASLtbx is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License along with ASLtbx. If not, see

<http://www.gnu.org/licenses/>.

7 Acknowledgement

Developing and maintaining ASLtbx is purely voluntary. There is no financial support directly for this

endeavor. I would thank Zhengjun Li, a PhD candidate in my lab, who has helped a lot for setting up the

website, polishing the scripts. He also drafted the first version of this manual. The earliest version of the

CBF quantification code was translated from an IDL code developed at Upenn with contributions from

Danny JJ Wang, Geoffrey Aguirre, and David Alsop.

