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SUMMARY

We present a high-dimensional model of the repre-
sentational space in human ventral temporal (VT)
cortex inwhichdimensions are response-tuning func-
tions thatarecommonacross individualsandpatterns
of response are modeled as weighted sums of basis
patterns associated with these response tunings.
We map response-pattern vectors, measured with
fMRI, from individual subjects’ voxel spaces into this
commonmodel space using a newmethod, ‘‘hypera-
lignment.’’ Hyperalignment parameters based on re-
sponses during one experiment—movie viewing—
identified 35 common response-tuning functions
that captured fine-grained distinctions among a wide
range of stimuli in the movie and in two category
perception experiments. Between-subject classifica-
tion (BSC, multivariate pattern classification based
on other subjects’ data) of response-pattern vectors
in common model space greatly exceeded BSC of
anatomically aligned responses and matched within-
subject classification.Results indicate thatpopulation
codes for complex visual stimuli in VT cortex are
basedon response-tuning functions that are common
across individuals.

INTRODUCTION

Representations of complex visual stimuli in human ventral

temporal (VT) cortex are encoded in population responses that

can be decoded with multivariate pattern (MVP) classification

(Haxby et al., 2001; Spiridon and Kanwisher, 2002; Cox and

Savoy, 2003; Tsao et al., 2003, 2006; Hanson et al., 2004;

O’Toole et al., 2005; Hung et al., 2005; Kiani et al., 2007; Reddy

and Kanwisher, 2007; Op de Beeck et al., 2010; Brants et al.,

2011). Population responses are patterns of neural activity. For

MVP analysis, patterns of activity are analyzed as vectors in

a high-dimensional space in which each dimension is a local
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feature in the distributed pattern. We refer to this response-

pattern vector space as a representational space. Features can

be single-neuron recordings, local field potentials, or imaging

measures of aggregate local neural activity, such as voxels in

functional magnetic resonance imaging (fMRI). MVP analysis

exploits variability in response-tuning profiles across these fea-

tures to classify and characterize the distinctions among re-

sponses to different stimuli (Norman et al., 2006; Haynes and

Rees, 2006; O’Toole et al., 2007; Kriegeskorte et al., 2008a).

Because establishing feature correspondence across brains is

difficult, a new classifier model generally is built for each brain.

Consequently, no general model of the representational space

in VT cortex exists that uses a common set of response-tuning

functions and can account for the fine-grained distinctions

among neural representations in VT cortex for a wide range of

visual stimuli.

Representational distinctions among complex visual stimuli

are embedded in topographies in VT cortex that have coarse-

to-fine spatial scales. Large-scale topographic features that

are fairly consistent across individuals reflect coarser categorical

distinctions, such as animate versus inanimate categories in

lateral to medial VT cortex (Caramazza and Shelton, 1998; Chao

et al., 1999; Hanson et al., 2004; Kriegeskorte et al., 2008b;

Mahon and Caramazza, 2009), faces versus objects and body

parts versus objects (the fusiform face and body-parts areas,

FFAs and FBAs, respectively; Kanwisher et al., 1997; Peelen

and Downing, 2005; Kriegeskorte et al., 2008b), and places

versus objects (the parahippocampal place area, PPA; Epstein

and Kanwisher, 1998). Finer distinctions among animate cate-

gories, among mammalian faces, among buildings, and among

objects appear to be carried by smaller-scale topographic fea-

tures, and an arrangement of these features that is consistent

across brains has not been reported (Haxby et al., 2001; Cox

and Savoy, 2003; Brants et al., 2011). MVP analysis can detect

the features that underlie these representational distinctions at

both the coarse and fine spatial scales, whereas conventional

univariate analyses are sensitive only to the coarse spatial scale

topographies. Current models of the functional organization of

VT cortex that are based on response-tuning functions defined

by simple contrasts, such as faces versus objects or scenes

versus objects, andon relatively large category-selective regions,
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such as the FFA and PPA (Kanwisher et al., 1997; Epstein and

Kanwisher, 1998; Kanwisher, 2010; Lashkari et al., 2010), fail to

capture the fine-grained distinctions among responses to a

wide range of stimuli and the fine spatial scale of the response

patterns that carry those distinctions.

Here we present a high-dimensional model of the representa-

tional space in VT cortex that is based on response-tuning func-

tions that are common across brains and is valid across a wide

range of complex visual stimuli. To construct this model, we

developed a method, hyperalignment, which aligns patterns of

neural response across subjects into a common, high-dimen-

sional space. We estimated the hyperalignment parameters

that transform an individual’s VT voxel space into this common

space based on responses obtained with fMRI while subjects

watched a full-length action movie, Raiders of the Lost Ark. We

reasoned that estimation of hyperalignment parameters that

are valid for a large domain of complex visual stimuli would

require sampling responses to a wide range of stimuli. Viewing

a natural movie evokes local brain responses that show syn-

chrony across subjects in a large expanse of cortex, including

visual areas in the occipital, ventral temporal, and lateral

temporal cortices (Hasson et al., 2004; Bartels and Zeki, 2004;

Sabuncu et al., 2010). In contrast to earlier univariate analyses

of local synchrony, we took a multivariate approach to analyze

the time-varying patterns of response evoked by this rich,

dynamic stimulus. We reasoned that in the brains of two individ-

uals viewing the same dynamic visual stimulus, such as a full-

length action movie, the trajectories of VT response-pattern

vectors over time reflect similar visual information, but the coor-

dinate systems for their respective representational spaces, in

which each dimension is one voxel, are poorly aligned. Hypera-

lignment uses Procrustean transformations (Schönemann, 1966)

iteratively over pairs of subjects to derive a group coordinate

system in which subjects’ vector trajectories are in optimal align-

ment. The Procrustean transformation is an orthogonal transfor-

mation (rotations and reflections) that minimizes the Euclidean

distance between two sets of paired vectors. After hyperalign-

ment, we reduced the dimensionality of the common space by

performing a principal components analysis (PCA) and deter-

mined the subspace that is sufficient to capture the full range

of response-pattern distinctions.

We tested the validity of the common model by performing

between-subject MVP classification of responses to a wide

range of visual stimuli—time segments from the movie and still

images of seven categories of faces and objects and six animal

species. For between-subject classification (BSC), the response

vectors for one subject were classified using a classifier model

based on other subjects’ response vectors. We compared

BSC performance for response vectors that had been trans-

formed into the common model space to BSC for data that

were aligned across subjects based on anatomy and to within-

subject classification (WSC), in which the response vectors for

a subject were classified using an individually tailored classifier

model based on response vectors from the same subject.

Results showed that BSC accuracies for response-pattern vec-

tors in common model space were markedly higher than BSC

accuracies for anatomically aligned response-pattern vectors

and equivalent to WSC accuracies. More than 20 dimensions
were needed to achieve this level of accuracy. Here we present

a commonmodel space with 35 dimensions. Thus, the represen-

tational space in VT cortex can bemodeledwith response-tuning

functions that are common across subjects. These response-

tuning functions are associated with cortical topographies that

serve as basis patterns for modeling patterns of response to

stimuli and can be examined in each individual’s VT cortex.

The general validity of the model across the varied stimulus

sets that we tested could be achieved only when hyperalignment

was based on responses to the movie. Common models based

on responses to smaller, more controlled stimulus sets—still

images of a limited number of categories—were valid only for

restricted stimulus domains, indicating that these models cap-

tured only a subspace of the substantially larger representational

space in VT cortex.

RESULTS

In our first experiment, we collected functional brain imageswhile

21 subjects watched a full-length action movie, Raiders of the

Lost Ark. In a second experiment, we measured brain activity

while ten of these subjects, at Princeton University, looked at still

images of seven categories of faces and objects—male faces,

female faces, monkey faces, dog faces, shoes, chairs, and

houses. In a third experiment, we measured brain activity while

the other 11 subjects, at Dartmouth College, looked at still

images of six animal species—ladybugs, luna moths, yellow-

throated warblers, mallards, ring-tailed lemurs, and squirrel

monkeys.

Hyperalignment uses the Procrustean transformation

(Schönemann, 1966) to align individual subjects’ VT voxel

spaces into a common space (Figure 1). Individual voxel spaces

and the common space are high dimensional, unlike the three-

dimensional anatomical spaces. The Procrustean transforma-

tion finds the optimal orthogonal matrix for a rigid rotation with

reflections that minimizes Euclidean distances between two

sets of labeled vectors. For hyperalignment, labeled vectors

are patterns of response for time points in an fMRI experiment,

and the Procrustean transformation rotates (with reflections)

the high-dimensional coordinate axes for each subject to align

pattern vectors for matching time points. After rotation, coordi-

nate axes, or dimensions, in the common space are no longer

single voxels with discrete cortical locations but, rather, are

distributed patterns across VT cortex (weighted sums of voxels).

Minimizing the distance between subjects’ time-point response-

pattern vectors also makes time-series responses for each

common space dimension maximally similar across subjects

(see Figure S2A available online). First, the voxel spaces for

two subjects were brought into optimal alignment. We then

brought a third subject’s voxel space into optimal alignment

with the mean trajectory for the first two subjects and proceeded

by successively bringing each remaining subject’s voxel space

into alignment with the mean trajectory of response vectors

from previous subjects. In a second iteration, we brought each

individual subject’s voxel space into alignment with the group

mean trajectory from the first iteration and recalculated the

group mean vector trajectory. In the third and final step, we re-

calculated the orthogonal matrix that brought each subject’s
Neuron 72, 404–416, October 20, 2011 ª2011 Elsevier Inc. 405



Figure 1. Schematic of the Procedure for Building a High-Dimen-

sional Common Model

The upper box shows the input data before any transformations—separate

matrices of 500 voxels in the VT cortex of each hemisphere with time-series

data for each of 21 subjects. The middle box represents the data structures

after hyperalignment. For each subject there is amatrix of time-series data that

has been rotated (with reflections) into the common, 500-dimensional space

for the VT cortex of each hemisphere with an orthogonal matrix—the hyper-

alignment parameters—that specifies that transformation. The mean time-

series data in the common spaces—2 matrices with 500 dimensions 3 2,205

time points—are the targets for hyperalignment. The lower box represents the

data structures after dimensionality reduction. PCA was performed on the

mean time-series data from all 1,000 dimensions (right and left VT cortices),

and the top 35 PCswere found to afford BSC that was equivalent to BSC of the

1,000-dimensional hyperaligned data and to WSC. For each subject, there is

a matrix of time series for each PC (35 PCs3 2,205 time points) and part of an

orthogonal matrix (35 PCs 3 1,000 voxel weights) that can be used to trans-

form any data from the same 1,000 VT voxels into the common model space.

See also Figure S1.
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VT voxel space into optimal alignment with the final group mean

vector trajectory. The orthogonal matrix for each subject was

then treated as that subject’s ‘‘hyperalignment parameters,’’

which we used to transform data from independent experiments

into the common space.

Between-Subject Classification after Hyperalignment
Based on Responses to the Movie
We calculated a common space for all 21 subjects based on

responses to the movie (Figure 1, middle). We performed BSC

of response patterns from all three data sets to test the validity

of this space as a common model for the high-dimensional re-

presentational space in VT cortex. With BSC, we tested whether

a given subject’s response patterns could be classified using an

MVP classifier trained on other subjects’ patterns. For BSC of the

movie data, we used hyperalignment parameters derived from

responses to one half of the movie to transform each subject’s

VT responses to the other half of the movie into the common

space. We then tested whether BSC could identify sequences
406 Neuron 72, 404–416, October 20, 2011 ª2011 Elsevier Inc.
of evoked patterns from short time segments in the other half

of the movie, as compared to other possible time segments of

the same length. The data used for BSC of time segments in

one half of the movie was not used for voxel selection or deriva-

tion of hyperalignment parameters (Kriegeskorte et al., 2009).

For the category perception experiments, we used the hypera-

lignment parameters derived from the entire movie data to trans-

form each subject’s VT responses to the category images into

the common space and tested whether BSC could identify the

stimulus category being viewed. As a basis for comparison, we

also performed BSC on data that had been aligned based on

anatomy, using normalization to the Talairach atlas (Talairach

and Tournoux, 1988). For the category perception experiments,

we also compared BSC to within-subject classification (WSC), in

which individually tailored classifiers were built for each subject.

Because each movie time segment was unique, WSC of movie

time segments was not possible. Voxel sets were selected

based on between-subject correlations of movie time series

(see Supplemental Experimental Procedures). BSC accuracies

were relatively stable across a wide range of voxel set sizes.

We present results for analyses of 1,000 voxels (500 per hemi-

sphere). See Figures S3A and S3B for results using other voxel

set sizes.

We used a one-nearest neighbor classifier based on vector

correlations for BSC of 18 s segments of the movie (six time

points, TR = 3 s). An individual’s response vector to a specific

time segment was correctly classified if the correlation of that

response vector with the group mean response vector (ex-

cluding that individual) for the same time segment was higher

than all correlations of that vector with group mean response

vectors for more than 1,000 other time segments of equal length.

Other time segments were selected using a sliding time window,

and those that overlapped with the target time segment were

excluded from comparison. After hyperalignment, BSC identi-

fied these segments correctly with 70.6% accuracy (SE =

2.6%, chance < 1%; Figure 2). After anatomical alignment, the

same time segments could be classified with 32.0% accuracy

(SE = 2.5%), a level of accuracy that was better than chance

but far lower than after hyperalignment (p < 0.001).

We used a linear support vector machine (SVM) for BSC of

both category perception experiments. After hyperalignment

using parameters derived from the movie data, BSC identified

the seven face and object categories with 63.9% accuracy

(SE = 2.2%, chance = 14.3%; Figure 2A). The confusion matrix

(Figure 2B) shows that the classifier distinguished human faces

from nonhuman animal faces and monkey faces from dog faces

but could not distinguish human female from male faces. The

classifier also could distinguish chairs, shoes, and houses. Con-

fusions between face and object categories were rare. WSC

accuracy (63.2%± 2.1%) was equivalent to BSC of hyperaligned

data with a similar pattern of confusions, but BSC of anatomi-

cally aligned data (44.6% ± 1.4%) was significantly worse

(p < 0.001; Figure 2).

After hyperalignment using parameters derived from themovie

data, BSC identified the six animal species with 68.0% accuracy

(SE = 2.8%, chance = 16.7%; Figure 2A). The confusion matrix

shows that the classifier could identify each individual species

and that confusions were most often made within class, i.e.,



Figure 2. Results of MVP Classification Analyses of Data from Three Experiments

(A) Classification accuracies (means ± SE) for BSC of data that have been mapped into the 1,000-dimensional common space with hyperalignment, into the

35-dimensional commonmodel space, and into Talairach atlas space (anatomically aligned), as well as for WSC of the category perception experiments. Dashed

lines indicate chance performance.

(B) Confusion matrices for the category perception experiments for the same MVP classifications. See also Figure S2.
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between insects, between birds, or between primates. WSC

accuracy (68.9%± 2.8%) was equivalent to BSC of hyperaligned

data with a similar pattern of confusions. BSC of anatomically

aligned animal species data (37.4% ± 1.5%) showed an even

larger decrement relative to BSC of hyperaligned data than

that found for the face and object perception data (p < 0.001).

Reducing the Dimensionality of the Common Space
We next asked how many dimensions are necessary to capture

the information that enables these high levels of BSC accuracy

(Figure 1). We performed a principal components analysis (PCA)

of the mean responses to each movie time point in common

model space, averaging across subjects, then performed BSC

of the movie, face and object, and animal species data with
varying numbers of top principal components (PCs). The results

show that BSC accuracies for all three data sets continue to

increase with more than 20 PCs (Figure 3A). We present results

for a common model space with 35 dimensions, which affords

BSC classification accuracies that are equivalent to BSC accu-

racies using all 1,000 original dimensions (68.3% ± 2.6% versus

70.6% ± 2.6% for movie time segments; 64.8% ± 2.3%

versus 63.9% ± 2.2% for faces and objects; 67.6% ± 3.1%

versus 68.0% ± 2.8% for animal species; Figure 2A). The effect

of number of PCs on BSC was similar for models that were

based only on Princeton (n = 10) or Dartmouth (n = 11) data, sug-

gesting that this estimate of dimensionality is robust across

differences in scanning hardware and scanning parameters

(see Figure S3D).
Neuron 72, 404–416, October 20, 2011 ª2011 Elsevier Inc. 407



Figure 3. BSC Accuracies after Dimensionality Reduction

Accuracies are shown as means ± SE.

(A) BSC for 18 s movie time segments, the face and object categories, and the

animal species for different numbers of PCs.

(B) BSC for 35 PCs that were calculated based on responses during movie

viewing, for ten PCs that were calculated based on responses to the face and

object images, and for ten PCs that were calculated based on responses to the

animal images. Note that only the 35 PCs based on responses to the movie

afforded high levels of BSC for stimuli from all three experiments. Dashed lines

indicate chance performance. See also Figure S3.

Figure 4. Comparison of Common Models Based on Responses to

the Movie and on Responses to Still Images

We compared BSC accuracies (means ± SE) for data in the common model

space based on movie viewing relative to common model spaces based on

responses to the images in the category perception experiments. Note that

commonmodels based on responses to the category images afford good BSC

for those experiments but do not generalize to BSC of responses tomovie time

segments. Only the common model based on movie viewing generalizes to

high levels of BSC for stimuli from all three experiments. Dashed lines indicate

chance performance. See also Figure S4.

Neuron

Common Model of Human Ventral Temporal Cortex
We next asked whether the information necessary for classifi-

cation of stimuli in the two category perception experiments

could be captured in smaller subspaces and whether these

subspaces were similar. For each experiment, we performed

PCAs on mean category vectors for each run, averaged across

subjects, in the common model space derived from the movie

data, then used these PCs for BSC. Data folding, i.e., division

of data into training and testing sets, ensured that generalization

testing was done on data that were not used for hyperalignment

or classifier training (Kriegeskorte et al., 2009). BSC of the face

and object categories reached a maximal level with the top 12

PCs from the PCA of the face and object data (67.7% ± 2.1%).

BSC of the animal species reached a maximal level with the

top nine PCs from the PCA of the animal species data

(73.9% ± 3.0%). The top PCs from the face and object data,

however, did not afford good classification of the animal species

(55.0% ± 3.4%) or the movie time segments (50.1% ± 2.7%), nor

did the top PCs from the animal species data afford good clas-

sification of the face and object categories (54.2% ± 2.6%) or
408 Neuron 72, 404–416, October 20, 2011 ª2011 Elsevier Inc.
the movie time segments (49.5% ± 2.6%; Figure 3B). Thus,

the lower-dimensional representational spaces for the limited

number of stimulus categories in the face and object experiment

and in the animal species experiment are different from each

other and are of less general validity than the higher-dimensional

movie-based common model space.

Hyperalignment and Between-Subject Classification
within Experiments
We next asked whether a complex, natural stimulus, such as the

movie, is necessary to derive hyperalignment parameters that

generate a common space with general validity across a wide

range of complex visual stimuli. In principle, a common space

and hyperalignment parameters can be derived from any fMRI

time series. We investigated whether hyperalignment of the

face and object data and hyperalignment of the animal species

data would afford high levels of BSC accuracy using only the

data from those experiments. In each experiment, we derived

a common space based on all runs but one. We transformed

the data from all runs, including the left-out run, into this common

space. We trained the classifier on those runs used for hypera-

lignment in all subjects but one and tested the classifier on the

data from the left-out run in the left-out subject. Thus, the test

data for determining classifier accuracy played no role either in

hyperalignment or in classifier training (Kriegeskorte et al., 2009).

BSC of face and object categories after hyperalignment based

on data from that experiment was equivalent to BSC after movie-

based hyperalignment (62.9% ± 2.9% versus 63.9% ± 2.2%,

respectively; Figure 4). Surprisingly, BSC of the animal species

after hyperalignment based on data from that experiment was

significantly better than BSC after movie-based hyperalignment

(76.2% ± 3.7% versus 68.0% ± 2.8%, respectively; p < 0.05;

Figure 4). This result suggests that the validity for a model of
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a specific subspace may be enhanced by designing a stimulus

paradigm that samples the brain states in that subspace more

extensively.

We next asked whether hyperalignment based on these

simpler stimulus sets was sufficient to derive a common space

with general validity across a wider array of complex stimuli.

We applied the hyperalignment parameters derived from the

face and object data to the movie data in the ten Princeton

subjects and the hyperalignment parameters derived from the

animal species data to the movie data in the 11 Dartmouth

subjects. BSC of 18 smovie time segments after hyperalignment

based on category perception experiment data was markedly

worse than BSC after hyperalignment based on movie data

(17.6% ± 1.3% versus 65.8% ± 2.7% for Princeton subjects;

28.3% ± 2.8% versus 74.9% ± 4.1% for Dartmouth subjects;

p < 0.001 in both cases; Figure 4). Thus, hyperalignment of

data using a set of stimuli that is less diverse than the movie is

effective, but the resultant common space has validity that is

limited to a small subspace of the representational space in VT

cortex.

We conducted further analyses to investigate the properties of

responses to the movie that afford general validity across a wide

range of stimuli. We tested BSC of single time points in themovie

and in the face and object perception experiment, in which we

carefully matched the probability of correct classifications for

the two experiments. Single TRs in the movie experiment could

be classified with accuracies that were more than twice that

for single TRs in the category perception experiment (74.5% ±

2.5% versus 32.5% ± 1.8%; chance = 14%; Figure S4A). This

result suggests that VT responses evoked by the cluttered,

complex, and dynamic images in the movie are more distinctive

than are responses evoked by still images of single faces or

objects.

We also testedwhether the general validity of themodel space

reflects responses to stimuli that are in both the movie and the

category perception experiments or reflects stimulus properties

that are not specific to these stimuli. We recomputed the com-

mon model after removing all movie time points in which a

monkey, a dog, an insect, or a bird appeared. We also removed

time points for the 30 s that followed such episodes to factor out

effects of delayed hemodynamic responses. BSCof the face and

object and animal species categories, including distinctions

among monkeys, dogs, insects, and birds, was not affected by

removing these time points from the movie data (65.0% ± 1.9%

versus 64.8% ± 2.3% for faces and objects; 67.1% ± 3.0%

versus 67.6% ± 3.1% for animal species; Figure S4B). This result

suggests that the movie-based hyperalignment parameters

that afford generalization to these stimuli are not stimulus specific

but, rather, reflect stimulus properties that aremore abstract and

of more general utility for object representations.

Common Model Dimensions: Response-Tuning
Functions and Cortical Topographies
The dimensions that define the common model space are

selected as those that most efficiently account for variance in

patterns of response to themovie. Themodel space has adimen-

sionality that is much lower than that of the original voxel space

but much higher than the handful of binary contrasts for face,
place, and body-part selectivity that have dominated most

investigations into the functional organization of VT cortex.

Each dimension is associated with a response-tuning function

that is common across brains and with individual-specific cor-

tical topographies. The dimensions have meaning in aggregate

as a computational framework that captures the distinctions

among VT representations for a diverse set of complex visual

stimuli, but their meaning in isolation is less clear. The coordinate

axes for this space, however, can be rotated to search for dimen-

sions that have clearer meaning, in terms of response-tuning

function, and the cortical topographies for dimensions in a

rotated model space can be examined. Here we probe the

meaning of the common model space. First we examine the

response-tuning functions and cortical topographies for four of

the top five PCs. In the next section, we illustrate how to derive

a dimension based on a simple stimulus contrast—faces versus

objects—and examine the associated cortical topographies. We

show that the cortical topographies associated with well-known

category selectivities are preserved in the 35-dimensional com-

mon model space.

Individual VT voxel spaces can be transformed into the

common model space with a single parameter matrix (the first

35 columns of an orthogonal matrix; Figure 1; Figure S1A).

Each common model space dimension is associated with a

time-series response for each experiment. A response-tuning

profile for an individual voxel is modeled as a weighted sum of

these 35 response-tuning functions (Figure S1E). Each dimen-

sion is also associated with a topographic pattern in each indi-

vidual subject’s VT voxel space (Figure S1C), and the response

pattern for a stimulus is modeled as a weighted sum of these

35 patterns (Figure S1D).

Figure 5A shows the response-tuning functions of four PCs—

the first, second, third, and fifth PCs—for the face, object, and

animal species categories. These PCs are derived from time-

series responses to the movie, but within the model space they

also are associated with distinct profiles of responses to stimuli

in the category perception experiments (Figure S1B). The first

and fifth PCs reflect stronger responses for faces as compared

to objects. The first PC, however, is selective for human faces

with negative responses to all animal species, whereas the fifth

PC has positive responses to both human and nonhuman animal

faces and positive responses to all animal species. The second

and third PCs, by contrast, are associated with stronger

responses to the objects than to faces. The second PC reflects

a stronger response to houses than to small objects, whereas

the third PC reflects a stronger response to small objects.

Figure 5B shows the VT topographies in two subjects for these

four PCs. The locations of the individually defined FFA and PPA

(Kanwisher et al., 1997; Epstein and Kanwisher, 1998) are super-

imposed as white and black outlines, respectively, to provide an

additional reference for functional topography. Each PC has

a distinct topography, and these topographies are consistent,

but not identical, across subjects, as evident in this pair of

subjects. The topographies of these PCs show only a rough

correspondence with the outlines of the FFA and PPA. For

example, the first PC, whose tuning profile showed positive

responses only for human faces, has positive weights only in

small subregions of the FFA. The fifth PC, whose tuning profile
Neuron 72, 404–416, October 20, 2011 ª2011 Elsevier Inc. 409



Figure 5. Response-Tuning Profiles and Cortical Topographies for Common Model PCs

(A) Category response-tuning profiles for the first, second, third, and fifth PCs in the common model space. These PCs were derived to account for variance of

responses to the movie, but they also are associated with differential responses to the categories in the other two experiments. The scale for response-tuning

profiles is centered on zero, corresponding to the mean response to the movie, and scaled so that the maximum deviation from zero (positive or negative) is set

to one.

(B) The cortical topographies for the same PCs projected into the native voxel spaces of two subjects as the voxel weights for each PC in the matrix of

hyperalignment parameters for each subject. The outlines of individually defined face-selective (FFA) and house-selective (PPA) regions are shown for reference.

See also Figure S5.
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showed positive responses to both human and nonhuman

animal faces, has positive weights in most, but not all, of the

FFA, including the same subregions that had positive weights

for the first PC, as well as in more posterior VT regions outside

of the FFA. The second PC, which was associated with stronger

responses to objects—especially houses—than faces, has only

negative weights in the FFA and only positive weights in the

PPA, but the topography of positive responses extends into

a much larger region of medial VT cortex. By contrast, the third

PC, which also was associated with stronger responses to

objects than faces but with a preference for small objects over

houses, has a mixture of positive and negative weights in both

the FFA and PPA, with stronger positive weights in cortex

between these regions and in the inferior temporal gyrus.

Overall, these results show that the PCA-defined dimensions

capture a functional topography in VT cortex that has more

complexity and a finer spatial scale than that defined by large

category-selective regions such as the FFA and PPA.

Category-Selective Dimensions and Regions
in the Common Model
The topographies for the PCs in the common model that best

capture the variance in responses to the movie, a complex
410 Neuron 72, 404–416, October 20, 2011 ª2011 Elsevier Inc.
natural stimulus, did not correspond well with the category-

selective regions, the FFA and PPA, that are identified based

on responses to still images of a limited variety of stimuli. We

next asked whether the category selectivity that defines these

regions is preserved in the 35-dimensional representational

space of our model. First, we defined a dimension in the model

space based on a linear discriminant that contrasts the mean

response vector to faces and the mean response vector to

houses and objects. The mean response vectors were based

on group data in the face and object perception experiment.

We then plotted the voxel weights for this dimension in the native

anatomical spaces for individual subjects (Figure 6A; Figure S1F).

Unlike the topographies for principal components, the voxel

weights for this faces-versus-objects dimension have a topog-

raphy that corresponds well with the boundaries of individually

defined FFAs. Thus, when the response-tuning profiles are

modeled with this single dimension, the face selectivity of FFA

voxels is evident, but this dimension does not capture the fine-

scale topography in the FFA that is the basis for decoding finer

distinctions among faces or among nonface objects. By con-

trast, the dimensions in the common model do capture these

distinctions. MVP analysis restricted to the FFA affords signifi-

cant classification of human faces versus animal faces, dog



Figure 6. Contrast-Defined Category-Selective

Profiles in the Common Model Space Projected

into the Native Voxel Spaces of Two Subjects

(A) The topography associated with the contrast between

mean response to faces as compared to the mean re-

sponse to nonface objects (houses, chairs, and shoes).

Note the tight correspondence of the regions with positive

weights and the outlines of individually defined FFAs.

(B) FFA and PPA regions defined by contrasts in group

data projected into the native voxel spaces of two sub-

jects. For each subject, that subject’s own data were

excluded from the calculation of face selectivity and house

selectivity, yielding category-selective regions that were

based exclusively on other subjects’ data. Each subject’s

individually defined FFAs and PPAs are shown as outlines

to illustrate the tight correspondence with model-defined

category-selective regions.
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faces versus monkey faces, and even shoes versus chairs.

Moreover the topography within the FFA that enables decoding

these distinctions can be captured with common basis functions

when hyperalignment is restricted to individually defined FFA

voxels (Figure S2E).

We then asked whether the category-selective FFA and PPA

could be identified reliably in the common model space. For

each subject, we projected all other subjects’ face and object

data in the 35-dimensional common model space into that

subject’s 1,000 voxel native space. We then identified face-

selective and house-selective regions in that subject’s VT cortex

based solely on other subjects’ data. Figure 6B shows group-

defined FFAs and PPAs in two representative subjects. The

outlines of the individually defined FFA and PPA are super-

imposed on the group-defined regions to illustrate the close

correspondence. Thus, the common model also captures the

individual-specific anatomical locations of category-selective

regions within the VT cortex.

DISCUSSION

The objective of this research project was to develop a model

of the representational space in VT cortex that (1) is based on

response-tuning functions that are common across brains and

(2) captures the fine-scale distinctions among representations

of complex stimuli that, heretofore, have only been captured

by within-subject analyses using MVP classification. To meet

this objective, we developed a method, hyperalignment, which

maps data from individual subjects’ native voxel spaces into a

common, high-dimensional space. The dimensions in this com-

mon space are basis functions that are distinct response-tuning

functions defined by their commonality across brains. Model

dimensions also are associated with topographic patterns in

each subject’s native voxel space. Our results show that trans-

formation of response vectors into common space coordinates

affords between-subject MVP classification of subtle distinc-

tions among complex visual stimuli at levels of accuracy that

far exceed BSC based on anatomically aligned voxels and are

equivalent to, and can even exceed, WSC. Hyperalignment

thus makes it possible to build a high-dimensional model of
the representational space in VT cortex that is valid across

brains.

We also investigated whether we could build a single model

that was not only valid across brains, but also valid across

a wide range of complex visual stimuli. To this end, we used

a complex and dynamic natural stimulus—a full-length action

movie—to sample a diverse variety of representational states.

The results show that hyperalignment based on responses to

this stimulus affords a single model of VT cortex with general

validity across a broad range of stimuli, whereas hyperalignment

based on responses to still images in more controlled, conven-

tional experiments does not. Thus, by virtue of the rich diversity

of a complex, natural stimulus, our model of the representational

space in VT cortex also has general validity across stimuli.

Initially, the common space produced with hyperalignment

has the same number of dimensions as the number of voxels

in each individual’s native space. We asked how many distinct

common response-tuning functions are needed to contain the

information that affords the full range of fine-grained distinctions

among complex, visual stimuli. We tested the sufficiency of

lower-dimensional subspaces and found that BSC accuracies

continued to increase with more than 20 common response-

tuning functions. We present a 35-dimensional common model

space that afforded BSC for all three experiments at levels of

accuracy that were equivalent to BSCwith all 1,000 hyperaligned

dimensions or WSC with 1,000 voxels. Ten dimensions were

sufficient within the limited stimulus domains of each category

perception experiment, but these sets of ten dimensions did

not afford high levels of BSC for the other experiment or for the

movie. Thus, these lower-dimensional models are subspaces

of the full model and are valid only for more limited stimulus

domains.

Modeling the Representational Space in VT Cortex
with Common Basis Functions
Hyperalignment uses the Procrustean transformation to rotate

and reflect the coordinate axes for an individual’s voxel space

into a common coordinate system in which the response vectors

for the same stimuli or events are in optimal alignment across

subjects. Principal components analysis is then used to rotate
Neuron 72, 404–416, October 20, 2011 ª2011 Elsevier Inc. 411
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the common space into a new coordinate system that is ordered

by variance accounted for, and the common space is reduced to

the top components that afford high levels of BSC. This pro-

cedure produces a parameter matrix for each subject that trans-

forms that subject’s data into model space coordinates (bottom

square in Figure 1; Figure S1A).

The parameter matrix for each subject can be applied to trans-

form a different set of response-pattern vectors, using the same

voxels in that subject, into the common model space (Fig-

ure S1B). This stepmodels the patterns of response to new stim-

ulus conditions as weighted sums of the same basis patterns

that model the responses to stimuli that were used to develop

the common space. In our principal analysis, model dimensions

were defined by common differential responses to time points in

the movie. Rotating the response-pattern vectors for the cate-

gory perception experiments into these dimensions afforded

BSC of those categories at levels of accuracy that are equiva-

lent to WSC and allowed us to further characterize the

response-tuning profiles for model dimensions in terms of differ-

ential responses to specific categories of faces, objects, and

animals.

The columns in each subject’s hyperalignment parameters

contain information about the topographic patterns for each

model dimension in the form of voxel weights that can be dis-

played as brain images (Figure 6B; Figure S1C). Patterns of re-

sponse to single stimuli or time points are modeled as weighted

sums of these patterns (Figure S1D). The topographic patterns

for each model dimension show some consistency across indi-

vidual brains but are not identical. No single topography in a

canonical or average brain can capture the fine-scale topogra-

phies that are seen in individual subjects. The primary motivation

for the development of hyperalignment was to find such com-

mon response-tuning functions that are associated with variable

cortical topographies.

The rows in a datamatrix contain themodel space coordinates

of response-pattern vectors for time points or stimuli. The

response profile of a single voxel is modeled as a weighted

sum of the response-tuning functions for dimensions (Fig-

ure S1E). Modeling voxel response profiles as weighted sums

of response-tuning basis functions can capture an unlimited

variety of such profiles. Computational approaches that define

voxel response profiles as types (Lashkari et al., 2010), rather

than as mixtures of basis functions, cannot model this unlimited

variation, making them unsuited for modeling fine-grained struc-

ture in response topographies.

The full set of dimensions models topographies that are more

fine grained than those of category-selective areas for faces

(FFAs) and houses (PPAs; Figure 5B; Figures S5A and S5B).

Category-selective areas are defined by simple contrasts, which

are single dimensions in the model space. The single dimension

that is defined by the contrast between responses to faces

and objects produces individual topographies that correspond

well with the outline of individually defined FFAs (Figure 6A).

Category-selective regions can be defined based on group

data that is projected into an individual’s native brain space.

Group-defined FFAs and PPAs in individual brain spaces corre-

spond well with the regions defined by that subject’s own data

(Figure 6B). Thus, category-selective response profiles, their
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associated topographies, and the outlines of category-selective

regions are preserved in the common model and can be ex-

tracted with high fidelity. Such category selectivities, however,

do not account for a majority of the variance in VT responses

to natural, dynamic stimuli. Moreover, single dimensions that

define category-selective regions cannot model the fine-grained

variations in response topographies within the FFA and PPA that

are modeled well by weighted sums of model dimensions and

afford classification of responses to a wide range of stimulus

distinctions (see Figure S2E).

Single-neuron response-tuning profiles in monkey inferior

temporal cortex (IT) reflect complex object features, and pat-

terns of responses over a population represent object categories

and identities (Logothetis and Sheinberg, 1996; Tanaka, 2003;

Hung et al., 2005; Tsao et al., 2006; Freiwald et al., 2009; Serre

et al., 2007; Kiani et al., 2007). IT response-tuning profiles

show a variety that appears open ended and, to our knowledge,

has not been modeled with response-tuning basis functions

(with the exception of Freiwald et al. [2009]’s investigation of

response-tuning basis functions for faces). The relationship

between neuronal-tuning functions and model-basis functions

for voxel response profiles is unknown. Population responses

in monkey IT, as measured with multiple single-unit recording,

and fMRI response patterns in human VT cortex are related (Kiani

et al., 2007; Kriegeskorte et al., 2008b). Using our methods, the

representational spaces for neuronal population responses and

fMRI response patterns could be modeled, preferably with

data from the same animals, and the form of a transformation

that relates the basis functions for the neuronal space to the

basis functions for the fMRI space could be investigated.

Complex, Natural Stimuli for Sampling Representational
State Spaces
The second goal of this project was to develop a single model

that was valid across stimuli that evoke distinct patterns of

response in VT cortex. To this end, we collected three data sets

for deriving transformations into a common space and testing

general validity. All data sets could be used to derive the param-

eters for hyperalignment, and all data sets allowed BSC of

responses to different stimuli.

The central challenge was to estimate parameters in each

subject for a high-dimensional transformation that captures the

full variety of response patterns in VT cortex. We reasoned that

achieving such general validity would require sampling a wide

range of stimuli that reflect the statistics of normal visual experi-

ence. The use of a limited number of stimuli—eight, 12, or even

20 categories—constrains the number of dimensions that may

be derived. We chose the full-length action movie as a varied,

natural, and dynamic stimulus that can be viewed during an

fMRI experiment (Hasson et al., 2004; Bartels and Zeki, 2004;

Sabuncu et al., 2010). Parameter estimates derived from

responses to this stimulus produced a common model space

that afforded highly accurate MVP classification for all three

experiments. Supplemental analysis of the effect of the number

of movie time points used for model derivation indicates that

maximal BSC required most of the movie (1,700 time points or

85 min; Figure S2D). This space has a dimensionality that cannot

logically be derived from a more limited stimulus set.
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By contrast, the responses evoked by the stimuli in the cate-

gory perception experiments did not have these properties.

We also derived common models based on responses to the

face and object categories in ten subjects and on responses to

the pictures of animals in 11 subjects. These alternative common

models afforded high levels of accuracy for BSC of the stimulus

categories used to derive the common space but did not gener-

alize to BSC for the movie time segments. Thus, models based

on hyperalignment of responses to a limited number of stimulus

categories align only a small subspace within the representa-

tional space in VT cortex and are, therefore, inadequate as

general models of that space. On the positive side, these results

also show that hyperalignment can be used for BSC of an fMRI

experiment without data from movie viewing.

Further analyses revealed other desirable properties of the

movie as a stimulus for model derivation. The movie evoked

responses in VT cortex that were more distinctive than were

responses to the still images in the category perception experi-

ments. Moreover, the general validity of the model based on

the responses to the movie is not dependent on responses to

stimuli that are in both the movie and the category perception

experiments but, rather, appears to rest on stimulus properties

that are more abstract and of more general utility.

Relationship to Other Work
Neural representational spaces also can be aligned across

brains after they are transformed into similarity structures—the

full set of pairwise similarities for a stimulus set (Abdi et al.,

2009; Kriegeskorte et al., 2008a, 2008b; Connolly et al., in press).

These methods, however, are not inductive in that, unlike hyper-

alignment, they provide a transformation only of the similarity

spaces for the stimuli in the original experiment. By contrast,

hyperalignment parameters provide a general transformation of

voxel spaces that is independent of the stimuli used to derive

those parameters and can be applied to data from unrelated

experiments to map any response vector into the common

representational space.

Hyperalignment is fundamentally different from our previous

work on functional alignment of cortex (Sabuncu et al., 2010).

Functional alignment warps cortical topographies, using a

rubber-sheet warping that preserves topology. By contrast, hy-

peralignment rotates data into an abstract, high-dimensional

space, not a three-dimensional anatomical space. After func-

tional alignment, each cortical node is a single cortical location

with a time series that is simply interpolated from neighboring

voxel time series from the original cortical space. In the high-

dimensional common model space, each dimension is associ-

ated with a pattern of activity that is distributed across VT cortex

and with a time series response that is not typical of any single

voxel.

Our results differ from previous demonstrations of between-

subject MVP classification (Poldrack et al., 2009; Shinkareva

et al., 2008, 2011), which used only anatomy to align features

and performedMVP analysis on data from the whole brain rather

than restricting analysis to within-region patterns. Such analyses

mostly reflect coarse patterns of regional activations. By con-

trast, our results demonstrate that BSC of anatomically aligned

data from VT cortex is markedly worse than WSC.
Previous studies have shown that patterns of response to novel

stimuli—complex natural images (Kay et al., 2008; Naselaris et al.,

2009) and nouns (Mitchell et al., 2008)—can be predicted based

on individually tailored models that predict the response of each

voxel as a weighted sum of stimulus features from high-dimen-

sional models of stimulus spaces. Our work presents a more

general model insofar as it is not limited to any particular stimulus

space. Our model affords predictions of responses to any novel

stimulus based on other subjects’ responses to that stimulus but

cannot predict the response to a novel stimulus that was not pre-

sented to other subjects. A hybrid that integrates models of stim-

ulus spaces with models of neural representational spaces could

make a single prediction, based on neural data pooled across

subjects, of the response to a novel stimulus in the common

space, rather than make a new prediction for each subject.

Conclusion
The power and general utility of our model of the high-dimen-

sional representational space in VT cortex come from the deriva-

tion of each individual subject’s hyperalignment parameters.

These parameters allow new data response vectors in the

same VT voxels to be transformed into the model space coordi-

nate system. The advantage of such a transformation is that the

model response-tuning functions are common across brains,

affording group MVP analysis of fMRI data and the potential to

archive data about the functional organization of an area at a level

of detail that was not previously possible. For example, one

could catalog the model coordinates of response vectors for

an unlimited variety of stimuli that could be referenced relative

to new data for MVP classification or representational similarity

analysis (Kriegeskorte et al., 2008a).

In our results, BSC of hyperaligned data was equivalent to or

exceededWSC, suggesting a high level of commonality of repre-

sentational spaces across subjects. BSC of hyperaligned data

potentially can be improved with an augmented stimulus and

by includingmore subjects in classifier training data (Figure S2C).

WSC, however, also can be improved by collecting more data.

More detailed within-subject analysis should be able to detect

idiosyncrasies of individual representational spaces, but demon-

strating such idiosyncrasies and quantifying their role relative to

factors that are common across individuals require further work.

One also expects to find group differences in representational

spaces due to factors such as development, genetics, learn-

ing, and clinical disorders. Our methods could be adapted to

study such group differences in terms of alterations of model

response-tuning functions.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for details regarding subjects,

MRI scanning parameters, data preprocessing, region of interest definition,

and voxel selection. All subjects gave written, informed consent to participate

in the study, andall experimental procedureswere approvedby theappropriate

Institutional Review Boards at Princeton University and Dartmouth College.

Stimuli and Tasks

Movie Stimulus

For subjects at Princeton, movie viewing was divided into two sessions. In the

first session, subjects watched the first 55 min 3 s of the movie. After a short
Neuron 72, 404–416, October 20, 2011 ª2011 Elsevier Inc. 413
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break, during which subjects were taken out of the scanner, the second 55min

36 s of the movie was shown. For subjects at Dartmouth, movie viewing was

divided into eight parts due to scanner limitations. Each part was approxi-

mately 14min 20 s with an overlap of 20 s between adjacent parts (overlapping

TRs were discarded from the beginning of the runs for analysis). Subjects were

shown the first four parts in one session. After a short break, the second four

parts were shown. Movie scenes at the end of fourth part and eighth part were

matched to the movie scenes at the end of the first session and the second

session of the Princeton movie study. Subjects were instructed simply to

watch and listen to the movie and pay attention. The movie was projected

with an LCD projector onto a rear projection screen that the subject could

view through a mirror. The soundtrack for the movie was played through

headphones.

Face and Object Stimuli

In the face and object study, subjects viewed static, grayscale pictures of four

categories of faces (human female, human male, monkeys, and dogs) and

three categories of objects (houses, chairs, and shoes). Images were pre-

sented for 500 ms with 2 s interstimulus intervals. Sixteen images from one

category were shown in each block, and subjects performed a one-back repe-

tition detection task. Repetitions were different pictures of the same face or

object. Blocks were separated by 12 s blank intervals. One block of each stim-

ulus category was presented in each of eight runs.

Animal Species Stimuli

In the animal species study, subjects viewed static, color pictures of six

animal species (ladybug beetles, luna moths, mallard ducks, yellow-throated

warblers, ring-tailed lemurs, and squirrel monkeys). Stimulus images showed

full bodies of animals cropped out from the original background and overlaid

on a uniform gray background. Images subtended approximately 10� of visual
angle. These images were presented to subjects using a slow event-related

design with a recognition memory task. In each event, three images of the

same species were presented for 500 ms each in succession followed by

4.5 s of fixation cross. Each trial consisted of six stimulus events for each

species plus one 6 s blank event (fixation cross only) interspersed with the

stimulus events. Each trial was followed by a probe event, and the subject

indicated whether the probe event was identical to any of the events seen

during the trial. Order of events was assigned pseudorandomly. Six trials

were presented in each of ten runs, giving 60 encoding events per species

for each subject.

Data Analysis

Data were preprocessed using AFNI (Cox, 1996; http://afni.nimh.nih.gov). All

further analyses were performed using MATLAB (version 7.8, MathWorks)

and PyMVPA (Hanke et al., 2009; http://www.pymvpa.org). Software for

hyperalignment is available as part of PyMVPA (Hanke et al., 2009; http://

www.pymvpa.org), and data from these studies also can be downloaded

from the PyMVPA website.

Hyperalignment

Activation in a set of voxels at each time point can be considered as a vector in

a high-dimensional Euclidean spacewith each voxel as one dimension.We call

this a time-point vector and the space of voxels a voxel space. During movie

viewing, these activation patterns change over time, giving a sequence of

time-point vectors that trace a trajectory in the voxel space. Hyperalignment

uses Procrustean transformation to align individual subjects’ voxel spaces to

each other, time point by time point. This was done separately for each hemi-

sphere. A fixed number of top-ranking voxels (500 for main analyses) were

selected from each hemisphere of all subjects. A subject was chosen arbitrarily

to serve as the reference. The reference subject’s time-point vectors during

the movie study were taken as the initial group reference. In the first pass,

the nonreference subjects were iteratively chosen and their time-point vectors

were aligned to the time-point vectors of the current reference using the

Procrustean transformation (procrustes as implemented in MATLAB). After

each iteration, a new vector was calculated at each time point by averaging

the vectors of the current reference and the current subject in the transformed

space. The final reference time-point vectors after iterating through all subjects

in the first pass were the reference for the second pass. In the second pass, we

computed Procrustean transformations to align each subject’s time-point

vectors to the corresponding time-point vectors in this reference. At the end
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of the second pass, a new vector was calculated at each time point by aver-

aging all subjects’ vectors in the transformed space, which served as refer-

ence for the next pass. In the final pass, we calculated Procrustean transfor-

mations for each subject that aligned that subject’s voxel space to the

reference space. This pair of transformations, one for each hemisphere of a

subject, served as the hyperalignment parameters for that subject.

Procrustean transformation finds the optimal rotation matrix for two sets of

vectors that minimizes the sum of squared Euclidean distances between cor-

responding vectors in those sets. The Procrustean transformation also derives

a translation vector, but we did not use this vector because the data for each

voxel were standardized.

Principal Components Analysis

Movie data from each subject’s left and right hemispheres were projected into

the hyperaligned common spaces, and a group mean time-point vector was

computed for each time point of the movie. Mean movie data from both hemi-

spheres’ hyperaligned common spaces were concatenated, and PCA was

performed (princomp in MATLAB) on these data. This gave us 1,000 compo-

nents, in descending order of their eigenvalues, corresponding to the 1,000

dimensions of the hyperaligned common space.

Mapping Pattern Vectors from an Individual’s Voxel Space into the

Common Model

Patterns of response from any experiment in the same VT voxels of an indi-

vidual can be mapped into the common model using that individual’s hypera-

lignment parameters by multiplying the rows of voxel responses for those time

points or stimuli with the hyperalignment parameter matrix of that subject (Fig-

ure S1B). The resulting vectors were the mappings in the common model

space.

Mapping Vectors from the Common Model into Individual Voxel

Spaces

Mapping a vector in the common model space to individuals’ voxels was per-

formed by applying the inverse transformations from the model space to each

subject’s original voxel space using that subject’s hyperalignment parameter

matrix. This procedurewas used formapping PCs (Figure S1C), the activations

for a particular stimulus category (Figure S1D), and differential pattern vectors

(Figure S1F).

Differential Pattern Vectors

Patterns of activation for individual stimulus blocks from the face and object

study were projected into the common model space. A Fisher’s linear discrim-

inant vector was computed over vectors from all subjects and all blocks of

the two classes of interest. For the faces minus objects contrast vector, we

combined the vectors of female faces, male faces, monkey faces, and dog

faces into one class and the vectors of chairs, shoes, and houses into another.

Contrast vectors computed in the common model space were projected into

individual subjects’ anatomy using the method described above.

Common Model Functional Localizers

Functional localizers based on the common model were computed using data

from face and object study. We excluded the data from the subject we were

computing the localizers for. Patterns of activation for all blocks and all

subjects were projected into the common model space and then into the orig-

inal voxel space of the excluded subject. The commonmodel FFA was defined

as all contiguous clusters of 20 or more voxels that responded more to faces

than to objects at p < 10�10. The common model PPA was defined as all

contiguous clusters of 20 or more voxels that responded more to houses

than to faces at p < 10�10 and more to houses than to small objects at

p < 5 3 10�10.

Multivariate Pattern Classification

Category Classification. For decoding category information from the fMRI

data, we used a multiclass linear support vector machine (Vapnik, 1995;

Chang, C.C. and Lin, C.J., LIBSVM, a library for support vector machines,

http://www.csie.ntu.edu.tw/�cjlin/libsvm; nu-SVC = 0.5, nu = 0.5, epsilon =

0.001). For the face and object perception study, fMRI data from the 11th to

the 26th TR after the beginning of each stimulus block was averaged to repre-

sent the response pattern for that category block. There were seven such

blocks, one for each category in each of the eight runs. For the animal species

study, fMRI data from 4 s, 6 s, and 8 s after the stimulus onset was averaged in

each presentation and the data from six presentations of a category in a run

was averaged to represent that category’s response pattern in that run.

http://afni.nimh.nih.gov
http://www.pymvpa.org
http://www.pymvpa.org
http://www.pymvpa.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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WSC of face and object categories was performed by training the SVM

model on the data from seven runs (7 runs3 7 categories = 49 pattern vectors)

and testing the model on the left-out eighth run (seven pattern vectors) in each

subject independently. WSC accuracy was computed as the average classifi-

cation accuracy over eight run folds in each of the ten subjects (80 data folds).

WSC of animal species categories was performed in the sameway with ten run

folds in each of the 11 subjects (110 data folds).

For BSC of face and object categories, we trained the classifier on the cate-

gory patterns from seven runs in nine subjects (7 runs 3 7 categories 3 9

subject = 441 pattern vectors) and then tested the model on the left-out

subject’s patterns in the left-out run (seven pattern vectors). We excluded

the test run from each training data set to avoid any run-specific effects that

could not be included in WSC analyses. BSC accuracy was computed as

the averaged classification accuracy over eight run folds in each of the ten

subjects (80 data folds). BSC of animal species categories was performed in

the same way with ten run folds in each of the 11 subjects (110 data folds),

each with 540 pattern vectors in the training data (9 runs 3 6 categories 3

10 subjects). We performed the BSC on data that were mapped into the

common model space and on data that were aligned anatomically in Talairach

atlas space.

Movie Time Segment Classification. For BSC of movie time segments, we

used a correlation-based one-nearest neighbor classifier. Voxel selection

and derivation of the common model space used data from one half of the

movie. Data from the other half were mapped into the common model space

and used for BSC. In each subject, response patterns for each TR during

the test half of the movie and the five following TRs were concatenated for

an 18 s time segment. BSC of these time segments was performed by calcu-

lating the correlation between a test time segment in a test subject with the

group mean response-pattern vector, excluding the test subject’s data, for

that time segment and other time segments. Other time segments were iden-

tified using a sliding time window, and time segments that overlapped with the

test time segment were not used. A test time segment was classified as the

group mean time segment with which it had the maximum correlation. We per-

formed separate BSC analyses for subjects from each center to account for

the differences in stimulus presentation. We repeated classification for all

n�1 versus 1 subject folds and two movie-half folds (42 folds). We estimated

chance performance conservatively as <1%, assuming that even with tem-

poral autocorrelations time points separated by 30 s are independent. We per-

formed BSC of movie time segments on response patterns in Talairach space

and in the common model spaces derived from the movie data and from the

categorical-perception experiments. We used a correlation-based one-near-

est neighbor classifier for this analysis because the number of different time

segments in each half of themovie, >1,000 using a sliding timewindow, makes

a multiclass analysis based on pairwise binary classifications unwieldy.
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