Neurolmage 49 (2010) 1949-1952

Contents lists available at ScienceDirect

Neurolmage

journal homepage: www.elsevier.com/locate/ynimg

Comments and Controversies
Spatial smoothing hurts localization but not information: Pitfalls for brain mappers

Yukiyasu Kamitani *, Yasuhito Sawahata

ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Keihanna Science City, Kyoto 619-0288, Japan

ARTICLE INFO ABSTRACT

Article history:

Received 3 April 2009
Revised 12 June 2009
Accepted 17 June 2009
Available online 25 June 2009

Op de Beeck (Op de Beeck, H., 2009. Against hyperacuity in brain reading: Spatial smoothing does not hurt
multivariate fMRI analyses? Neuroimage) challenges the possibility of extracting information from subvoxel
representations via random biases associated with voxel sampling, the hypothesis proposed by Kamitani and
Tong (Kamitani, Y., Tong, F., 2005. Decoding the visual and subjective contents of the human brain. Nat.
Neurosci. 8, 679-685). Here, we show that his results provide no evidence against the possibility, being
consistent with both of the subvoxel and supravoxel representation models. Classification of spatially
smoothed fMRI data is not an effective means to probe into information sources for multivoxel decoding,
since smoothing does not hurt the information contents of multivoxel patterns. We point out the danger of
interpreting multivoxel decoding results based on intuitions guided by the conventional brain mapping

paradigm.

© 2009 Elsevier Inc. All rights reserved.

In Kamitani and Tong (2005), we proposed the notion of ‘ensemble
feature selectivity’, the selectivity achieved through optimally com-
bining fMRI voxels allowing for prediction or decoding of stimulus
features such as orientation and motion direction. Such selectivity can
arise from voxels each of which is only weakly selective due to the lack
of the spatial resolution of the standard fMRI to resolve the putative
feature representations. We suggested that information could be
extracted from random biases associated with voxel sampling of
subvoxel neural and vascular structures, which are known to have
substantial irregularities.

The issue of the current debate raised by Op de Beeck is whether
random biases of subvoxel structures can account for the observed
decoding results, or some broader supravoxel representations should
underlie the decoding. We acknowledge that this is an essential issue
regarding the foundation of multivoxel decoding analysis, and
requires further investigation. However, the argument put forward
by Op de Beeck in an attempt to challenge the possibility of subvoxel
sources seems to be based on an incorrect belief about the
mathematical nature of spatial smoothing, and on an artifact of the
simplified simulation. Here, we critically examine the reasoning of Op
de Beeck's argument and the underlying assumptions, and show that
his results are orthogonal to the issue of debate, being consistent with
both of the subvoxel and supravoxel information sources. We
specifically aim to remove common misconceptions regarding
information represented in multivoxel patterns, while leaving more
substantive arguments on the actual information sources for multi-
voxel decoding to other authors.
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No loss of information by spatial smoothing

Op de Beeck found that spatial smoothing using a Gaussian
kernel does not hurt decoding performance, and took this
observation as evidence against the theory of subvoxel sources.
His argument apparently assumes that spatial smoothing degrades
information represented in fine-scale patterns. Is this assumption
true?

Let an original voxel pattern x (Nx 1 vector; N, number of voxels),
and a smoothed voxel pattern X’ (N x 1). Smoothing can be expressed

by
x' = KXx, (1)

where K represents the smoothing kernel: each row represents the
smoothing weights for each element of x’. If smoothing does not
involve downsampling, K is a square matrix with each row having a
spatially shifted elements. As each row is linearly independent of the
other rows, K is full-ranked. Hence, K is invertible. The original voxel
pattern x can be recovered from the smoothed pattern by

x=K 'x. (2)

As shown above, smoothing, or more generally convolution, is an
invertible transformation, unless there is downsampling or a complete
cutoff of high frequency components (note that a Gaussian kernel
does not involve complete cutoffs). The inverse transformation, or
deconvolution, is known to be not robust in the presence of noise
added after smoothing. But the present case does not involve such
noise (except for some numerical errors). Thus, a smoothed voxel
pattern can be transformed back to the original voxel pattern without
loss of information. An example of the complete recovery of a
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smoothed image is shown in Fig. 1a. This demonstrates that even
though fine-scale features are smeared by smoothing, they can be
completely recovered by the inverse transformation.

Next, let us consider a binary linear classification problem.
Supposed that we obtain an optimal linear discriminant function,

fx) =w'x, 3)

where w is a vector representing voxel weights (bias terms included in
w and x; T, transpose). The classification boundary between two
classes is defined by the hyperplane f(x)=0. Test samples are
classified according whether f(x)>0 (class 1) or f(x) <0 (class 2).

We now consider classification in the smoothed voxel space. By
substituting K~ ! x’ for x in f(x), we have a linear discriminant
function for a smoothed voxel pattern x’

gx) = w K 'x =vx (4)

where v is the weight vector defined by w" K~ Note that this
discriminant function g(x’) always gives the same classification result
as f(x), that is, if f(x)>0, then g(x’)>0, and vice versa. Therefore, the
original and the smoothed data are equivalent, in the sense that one
can obtain identical classification results using an optimal discrimi-
nant function. More generally, it can also be shown that the likelihood
ratio between the distributions for the two classes remains the same
after spatial smoothing at any corresponding points in the multivoxel
space, indicating that the degree of overlap between the distributions
is not affected by smoothing.

A practical question is whether it is better to estimate w of f(x) in
the original voxel space, or v of g(x’) in the smoothed voxel space,
given alimited number of training data. This is a matter of how well the
data fit the nature of the mathematical model and the estimation
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algorithm. The accurate classification obtained with different levels of
smoothing (Fig. 3 in Op de Beeck (2009)) seems to suggest that SVM is
good at estimating the parameters both in the original and the
smoothed space.

In actual fMRI data analysis, a subset of voxels are often selected as
a region of interest (ROI) after the smoothing of the whole brain
volume. Within the ROI, this smoothing may not be invertible, because
signals outside the ROI are involved. Hence, for the comparison of the
original and smoothed patterns, the contamination of non-ROI voxels
should be carefully examined.

Smoothing with an appropriate scale may be important for
localizing relevant representations, as Op de Beeck notes. However,
as discussed above, smoothing does not hurt information, and an
optimal classifier can perform the same level of decoding regardless of
the degree of smoothing. Thus, the decoding results of smoothed data
need to be carefully interpreted when the spatial scale of information
sources is discussed.

Voxels are not independent in motion-corrected fMRI data

Besides the high decoding performance maintained after smooth-
ing, Op de Beeck's argument is based also on the size of correlation
between fMRI activity patterns for the same stimulus. He found that
the correlation size increased with the degree of smoothing, and that
this trend was consistent only with the simulation result from a large-
scale (supravoxel) representation, but not with the result from a
small-scale (subvoxel) representation, in which smoothing did not
affect the correlation size. Op de Beeck took this observation as
evidence for the existence of some large-scale representation under-
lying the fMRI data.

First, it should be noted that the analysis of the correlation size
does not tell us how distinct the voxel patterns for different stimuli
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Fig. 1. No loss of information by spatial smoothing. (a) Complete recovery of a smoothed image. An image on our lab's web site portraying one of the authors was used as the input
(120 109 pixels, 8 bit gray scale). Sharp edges were emphasized by applying the ‘nancyKOseki filter’ (http://www.hirax.net/misc/nancyKOseki/) to the source photo. Smoothing
was performed by multiplying the image vector (13080 [=120x 109] x 1) by the kernel matrix (K; 13080 x 13080), in which each row represented 2D Gaussian weights (standard
deviation, 50 pixels, isotropic). The smoothed image was then transformed by the inverse matrix K= . (b) Schematic representation of voxel patterns before and after smoothing.
Each symbol represents an fMRI activity pattern (circles, class 1; squares, class 2) on a two-voxel space (x;-x,, original; xi-x5 smoothed). Arrows indicate the mapping from x to x’
caused by the smoothing. f(x) and g(x’) denote linear discriminant functions performing exactly the same classification (open symbols, correctly classified; filled symbols,

misclassified).
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are. When the correlation size within a class increases, the correlation
size across classes can also increase. As we have seen, the information
about stimulus classes is preserved after smoothing, regardless of the
correlation size.

Then, why did smoothing have different effects on the simulation
results for the small- and the large-scale representations? A critical
difference is in the (in)dependency of neighboring voxels sampled
from these representations. The signals of neighboring voxels from the
small-scale representation are independent, being determined by the
biases of randomly arranged ‘cells’ within each voxel region. In
contrast, the signals of neighboring voxels from the large-scale
representation are dependent as they tend to share the same
preference. In the presence of signal dependency between neighbors,
smoothing may well help attenuate noise, resulting in a large
correlation size between voxel patterns. Note that in this simulation,
itis assumed that voxels are sampled from exactly the same regions in
every volume scan.

In actual fMRI measurement, however, it is difficult to achieve such
exact voxel samplings, because of the subject's head motions and
other sources of image shifts. It is customary to perform a motion-
correction procedure (Ashburner and Friston, 2004), as is done in Op
de Beeck's analysis of real fMRI data. But this procedure disrupts the
independence of voxel sampling. As illustrated in Fig. 2a, a residual
head motion smaller than the voxel size is often corrected by linear
interpolation using the neighboring voxels. A spline-based interpola-
tion method (default option in SPM) involves an even broader range
of voxels to determine the intensity of a voxel. Thus, the simulation
assuming independent voxel sampling is not realistic.
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We performed a slightly more realistic simulation, in which we
repeated the procedure of Op de Beeck's simulation except that voxel
samplings were randomly shifted every trial, and motion correction
was applied to create the data for analysis. Results show qualitatively
similar trends between the small and the large-scale representations
in both correlation size and classification performance (Fig. 2b, motion
correction by linear interpolation). Notably, the correlation size
increased with the degree of smoothing even for the small-scale
representation, in contrast to the result of Op de Beeck's simulation.
The difference between the small- and large-scale representations
became even smaller when a spline-based motion correction was
applied. Thus, both of the small- and the large-scale simulation results
are consistent with the real fMRI results, providing no ground for
ruling out the possibility of extracting information form a small-scale
representation.

In motion-corrected fMRI data, each voxel represents a broader
cortical region than a single voxel volume, and thus the signals of
neighboring voxels are not independent even for a small-scale
representation. The accurate classification obtained with the
motion-corrected simulation data (Fig. 2b; see also Fig. 6 in Kamitani
and Tong (2005)) suggests that each voxel can preserve reliable
information for decoding by detecting statistical biases in a region
broader than a single voxel volume.

Does size matter?

It may worth mentioning another prevailing assumption, which
also sounds intuitive but is not necessarily true. It is often argued that
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Fig. 2. Voxels are not independent in motion-corrected fMRI data. (a) Schematic view of motion correction. The upper and lower panels present an original and a motion-corrected
fMRI images, respectively. The solid oval in the upper panel shows the actual position of the head. The dashed oval indicates the target position to which all images should be aligned.
The head motion is corrected by linear interpolation using neighboring voxels. Resulting voxel intensities are no longer independent of the adjacent ones. (b) Simulation results with
motion correction. A random subvoxel head motion was introduced in each data sample, and then it was corrected by the standard linear interpolation method. Other procedures

were the same as those in Op de Beeck's simulations.
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a larger voxel should be less informative about stimuli represented in
subvoxel units, and therefore that if the decoding using large voxels
(often created by downsampling) maintain a high level of accuracy, it
indicates the presence of some large-scale representation. Down-
sampling, unlike spatial smoothing, is a non-invertible transformation
and thus can degrade information. However, if one considers a single
voxel or the same number of voxels, a large voxel (or N large voxels)
can be as informative as a small voxel (or N small voxels). Here, we
only hint at this point by providing a simple example (more rigorous
discussion will be given in our separate paper in preparation).

Consider a cortical representation consisting of two types of cells
preferring to either stimulus 1 or stimulus 2. These cells respond to the
stimuli with the same activity levels (4 0.5 for preferred stimulus;
— 0.5 for non-preferred stimulus) plus independent noise (~N(0, 0®)).
If each voxel contains M cells (motion correction not considered here),
and the cell's preference is randomly assigned with a probability of 0.5,
the number of cells preferring to stimulus 1 (M) follows a binomial
distribution, M; ~B(M, 0.5), having a mean E(M;) =M/2 (=Mx0.5)
and a variance Var(M;)=M/4 (=Mx0.5x(1—0.5); the same
distribution for ‘stimulus 2 cells’, My; My + M, = M).

In the analysis of subvoxel representations, the bias My —M, (=2
M; — M) is assumed to serve as the signal in each voxel. Using Var(M;) =
M/4, the variability of the signal, the square root of Var(M; —M,) =
Var(2 M; —M) becomes M'/2. On the other hand, as the voxel size
(M) increases, the noise in each voxel, that is, the sum of independent
noise from M cells, increases in proportion to M'/2, the same rate as the
signal variability. Therefore, at least in this simple model, a large voxel
can be as informative as a small voxel on average. This example provides
a cautionary note against the intuition, ‘the larger the less informative
about small representations’. Careful inspection will be necessary in
interpreting decoding results obtained with different voxel sizes.

Conclusion

We have critically examined the assumptions behind Op de Beeck's
reasoning, and shown that his results provide no piece of evidence

against ‘hyperacuity in brain reading’. Such assumptions may seem
intuitive from the mapping or localization point of view, but they need
to be carefully scrutinized when the information represented in
multivoxel patterns is discussed. Although it may be possible that
spatial smoothing could be effectively used to reveal information
sources underlying fMRI decoding, it would require more sophisti-
cated and quantitative modeling and study design.

In this comment, we have discussed voxel sampling as if fMRI
signals directly derive from neural responses. But this by no means
presents a realistic picture. fMRI is an indirect measure of neural
signals mediated by hemodynamic responses, and large vessels are
known to substantially contribute to the signals (Turner, 2002). The
vasculature may play the role of another ‘biased sampler’ of neural
representations, constituting a nested vascular-voxel sampling pro-
cess. It is important to note that the principle presented in the pre-
vious section ('Does size matter?') may apply to the vascular
sampling, too. As the collective response from a broad cortical region
can be as informative as that from a small region, it may be possible
that large vessels that drain blood from a broad cortical region can
carry reliable information about stimulus features represented in
small neural structures.
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