MR Spectroscopy at 7T

Harish Poptani, Ph.D.

University of Pennsylvania Department of Radiology

Increased chemical shift dispersion

Milk phantom

SVS steam, TE = 30 ms 8 cc voxel, 16 ave TA = 24 sec

Single voxel, one acquisition!

Minnesota, Varian

Increased SNR at 7T

Tkac et al, Minnesota, Varian 7T

MRSI of much smaller voxels!

Scheenen TWJ et al. Magn Reson Mat Phy Biol Med 21:95-101, 2008

High resolution metabolite maps

Scheenen TWJ et al. Magn Reson Mat Phy Biol Med 21:95-101, 2008

fMRS at 7T

Minnesota, Varian

fMRS

Minnesota, Varian

Detecting GSH

Unedited schemes cannot be used for robust detection of Glutathione which is at the shoulder of Creatine.

Radhika Srinivasan, UCSF, GE

Glutathione using a spectral editing sequence

The Aspartyl resonance of NAA (Asp-NAA) co-edits with Glutathione in the difference spectrum

Radhika Srinivasan, UCSF, GE

In-vivo detection of GSH at 3T vs 7T

visible peak corresponds to Asp-NAA

the SNR indicated in each voxel.

Glutathione was detected at 7T with the same SNR as Glutamate studies at 3T. This level of detection from a metabolite that is present at half the concentration of Glutamate demonstrates the sensitivity of 7T MRSI.

Radhika Srinivasan, UCSF, GE

Glutamate by TE averaged PRESS

Corn Oil-1.5T vs 7T

Bone marrow

Ravinder Regatte, NYU, Seimens

Skeletal Muscle

11:44:14 AM

³¹P MRS of the brain

Qiao, H et al, MRI 49:1281-1286, 2006

³¹P MRS of the brain

NOE enhanced Primary visual cortex 7.5 ml, 8 min Minnesota, Varian

Lei, H et al, MRM 49:199-205, 2003

Disadvantages

- Static field distortions
 - Shimming requirements –strong 2nd order shims
- Chemical shift displacement errors
 - Increased BW required higher requirement for achievable peak B1 – adiabatic pulses
- Less homogenous B1
 - B1 shimming methods, adiabatic pulses
- Short T2 need for shorter TE's
- SAR